3,688 research outputs found

    Investigating Peatland Stratigraphy and Hydrogeology Using Integrated Electrical Geophysics

    Get PDF
    Hydrology has been suggested as the mechanism controlling vegetation and related surficial pore-water chemistry in large peatlands. Peatland hydrology influences the carbon dynamics within these large carbon reservoirs and will influence their response to global warming. A geophysical survey was completed in Caribou Bog, a large peatland in Maine, to evaluate peatland stratigraphy and hydrology. Geophysical measurements were integrated with direct measurements of peat stratigraphy from probing, fluid chemistry, and vegetation patterns in the peatland. Consistent with previous field studies, ground-penetrating radar (GPR) was an excellent method for delineating peatland stratigraphy. Prominent reflectors from the peat-lake sediment and lake sediment-mineral soil contacts were precisely recorded up to 8 m deep. Two-dimensional resistivity and induced polarization imaging were used to investigate stratigraphy beneath the mineral soil, beyond the range of GPR. We observe that the peat is chargeable, and that IP imaging is an alternative method for defining peat thickness. The chargeability of peat is attributed to the high surface-charge density on partially decomposed organic matter. The electrical conductivity imaging resolved glaciomarine sediment thickness (a confining layer) and its variability across the basin. Comparison of the bulk conductivity images with peatland vegetation revealed a correlation between confining layer thickness and dominant vegetation type, suggesting that stratigraphy exerts a control on hydrogeology and vegetation distribution within this peatland. Terrain conductivity measured with a Geonics EM31 meter correlated with confining glaciomarine sediment thickness and was an effective method for estimating variability in glaciomarine sediment thickness over approximately 18 km(2). Our understanding of the hydrogeology, stratigraphy, and controls on vegetation growth in this peatland was much enhanced from the geophysical study

    Validating a Novel New Instrument for Measuring Firm Managers' Intellectual Property Management Practices: A study of biotechnology firms

    Get PDF
    Purpose: The purpose of this research project was to pilot and validate a new instrument to measure firm intellectual property (IP) management practices.Methodology/Approach: A survey instrument was developed in consultation with a Perth-based firm of patent attorneys specialising in IP management services. The survey was piloted by random mail-out to 357 biotechnology firms, 68 of which returned a useable response. IP managers' responses to the following seven dimensions of extent of IP management practice were measured on a 5-point Likert-scale: 1) Record-keeping and management practices (22 items); 2) IP capture and protection mechanisms (10 items); 3) Use of IP management services or traditional patent attorney services (9 items); 4) Defensive measures (12 items); 5) Business Plan and strategic vision (9 items); 6) Knowledge of the IP landscape (9 items); and, 7) Promoting an IP culture (7 items). Factor Analysis and Principle Component Analysis extraction method with Varimax Rotation were used to identify factors measured by our instrument.Findings: Between two and seven factors were extracted for each of the dimensions measuring IP management practices, explaining between 51% (IP Defensive Measures) to 74% (IP management services and traditional patent attorney services) of the cumulative variance on any one factors. Scrutiny of the Component Matrices for a common thread amongst large loadings indicated thirteen actual measures of IP management practices perceived by biotechnology firm IP managers; with high Cronbach's Alpha reliability.Research limitations/implications: Factor analysis of this instrument revealed that IP managers' responses were loading on 13 factors instead of the original 7 anticipated dimensions to the measure. The spread of 78 item was reduced to a more relevant and economical measure with 56 items. As scrutiny of the factor analysis has revealed increasing heterogeneity to IP management practices in the biotechnology industry, it might be interesting to repeat the study for IP managers in another industry. A limitation of the study is its Australian biotechnology context and also that no concession was made in the measure for the effect of firm vertical disintegration.Originality/value: To our knowledge this is a novel project. We have validated and streamlined a new IP management practices instrument with advice from a practicing firm of IP management consultants. The instrument should be useful to high-technology firms as a checklist of IP management practices for innovation management. It should also be a valuable measurement tool for academics, firms and industries wanting to characterise the nature of firm-level IP management practices

    Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions

    Get PDF
    The leaching of nitrate from intensively used arable soil is of major concern in many countries. In this study, we show how time lapse electrical resistivity tomography (ERT) can be used to characterize spatially heterogeneous processes of ion production, consumption, and transport in soils. A controlled release fertilizer was introduced into an undisturbed soil core in a laboratory lysimeter and subjected to infiltration events. The production of ions resulting from processes associated with nitrification and their transport through the soil core was observed by time lapse ERT and analysis of seepage water samples from a multicompartment sampler. ERT images show development and propagation of a high-conductivity plume from the fertilizer source zone. Molar amounts of nitrate produced in and exported from the soil core could be well reproduced by time lapse ERT using a spatial moment analysis. Furthermore, we observed that several shape measures of local breakthrough-curves (BTCs) of seepage water conductivity and nitrate derived by effluent analyses and BTCs of bulk conductivity derived by ERT are highly correlated, indicating the preservation of spatial differences of the plume breakthrough in the ERT data. Also differences between nitrate breakthrough and a conservative tracer breakthrough can be observed by ERT. However, the estimation of target ion concentrations by ERT is error bound and the smoothing algorithm of the inversion masks spatial conductivity differences. This results in difficulties reproducing spatial differences of ion source functions and variances of travel times. Despite the observed limitations, we conclude that time lapse ERT can be qualitatively and quantitatively informative with respect to processes affecting the fate of nitrate in arable soils

    Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions

    Get PDF
    The leaching of nitrate from intensively used arable soil is of major concern in many countries. In this study, we show how time lapse electrical resistivity tomography (ERT) can be used to characterize spatially heterogeneous processes of ion production, consumption, and transport in soils. A controlled release fertilizer was introduced into an undisturbed soil core in a laboratory lysimeter and subjected to infiltration events. The production of ions resulting from processes associated with nitrification and their transport through the soil core was observed by time lapse ERT and analysis of seepage water samples from a multicompartment sampler. ERT images show development and propagation of a high-conductivity plume from the fertilizer source zone. Molar amounts of nitrate produced in and exported from the soil core could be well reproduced by time lapse ERT using a spatial moment analysis. Furthermore, we observed that several shape measures of local breakthrough-curves (BTCs) of seepage water conductivity and nitrate derived by effluent analyses and BTCs of bulk conductivity derived by ERT are highly correlated, indicating the preservation of spatial differences of the plume breakthrough in the ERT data. Also differences between nitrate breakthrough and a conservative tracer breakthrough can be observed by ERT. However, the estimation of target ion concentrations by ERT is error bound and the smoothing algorithm of the inversion masks spatial conductivity differences. This results in difficulties reproducing spatial differences of ion source functions and variances of travel times. Despite the observed limitations, we conclude that time lapse ERT can be qualitatively and quantitatively informative with respect to processes affecting the fate of nitrate in arable soils

    Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system

    Get PDF
    Methane (CH4) ebullition in northern peatlands is poorly quantified in part due to its high spatiotemporal variability. In this study, a dynamic flux chamber (DFC) system was used to continuously measure CH4 fluxes from a monolith of nearā€surface Sphagnum peat at the laboratory scale to understand the complex behavior of CH4 ebullition. Coincident transmission ground penetrating radar measurements of gas content were also acquired at three depths within the monolith. A graphical method was developed to separate diffusion, steady ebullition, and episodic ebullition fluxes from the total CH4 flux recorded and to identify the timing and CH4 content of individual ebullition events. The results show that the application of the DFC had minimal disturbance on airā€peat CH4 exchange and estimated ebullition fluxes were not sensitive to the uncertainties associated with the graphical model. Steady and episodic ebullition fluxes were estimated to be averagely 36 Ā± 24% and 38 Ā± 24% of the total fluxes over the study period, respectively. The coupling between episodic CH4 ebullition and gas content within the three layers supports the existence of a threshold gas content regulating CH4 ebullition. However, the threshold at which active ebullition commenced varied between peat layers with a larger threshold (0.14 m3 māˆ’3) observed in the deeper layers, suggesting that the peat physical structure controls gas bubble dynamics in peat. Temperature variation (23Ā°C to 27Ā°C) was likely only responsible for small episodic ebullition events from the upper peat layer, while large ebullition events from the deeper layers were most likely triggered by drops in atmospheric pressure

    Induced-Polarization Measurements on Unconsolidated Sediments from a Site of Active Hydrocarbon Biodegradation

    Get PDF
    To investigate the potential role that indigenous microorganisms and microbial processes may play in altering low frequency electrical properties, induced-polarization (IP) measurements in the frequency range of 0.1 to 1000 Hz were acquired from sediment samples retrieved from a site contaminated by hydrocarbon undergoing intrinsic biodegradation. Increased imaginary conductivity and phase were observed for samples from the smear zone (contaminated with residual-phase hydrocarbon), exceeding values obtained for samples contaminated with dissolved-phase hydrocarbons, and in turn, exceeding values obtained for uncontaminated samples. Real conductivity, although generally elevated for samples from the smear zone, did not show a strong correlation with contamination. Controlled experiments on uncontaminated samples from the field site indicate that variations in surface area, electrolytic conductivity, and water content across the site cannot account for the high imaginary conductivity observed within the smear zone. We suggest that microbial processes may be responsible for the enhanced IP response observed at contaminated locations. Scanning electron microscopy and IP measurements during acid leaching indicate that etched pits on mineral surfaces -- caused by the production of organic acids or formed during microbial colonization of these surfaces -- are not the cause of the IP enhancement. Rather, we postulate that the accumulation of microbial cells (biofilms) with high surface area at the mineral-electrolyte interface generates the IP response. These findings illustrate the potential use of electrical measurements to noninvasively monitor microbial activity at sites undergoing natural hydrocarbon degradation

    The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions

    Full text link
    We consider the application of the DRA method to the case of several master integrals in a given sector. We establish a connection between the homogeneous part of dimensional recurrence and maximal unitarity cuts of the corresponding integrals: a maximally cut master integral appears to be a solution of the homogeneous part of the dimensional recurrence relation. This observation allows us to make a necessary step of the DRA method, the construction of the general solution of the homogeneous equation, which, in this case, is a coupled system of difference equations.Comment: 17 pages, 2 figure

    Effects of Microbial Processes on Electrolytic and Interfacial Electrical Properties of Unconsolidated Sediments

    Get PDF
    The effect of microbial processes on electrical properties of unconsolidated sediments was investigated in a laboratory experiment consisting of biotic and abiotic sand columns. The biotic column (nutrient, diesel and bacteria) showed (a) temporal increase in the real, imaginary, and surface conductivity, and (b) temporal decrease in the formation factor. The abiotic columns (nutrient; and nutrient and diesel) showed no significant changes. Increase in microbial population numbers, decrease in organic carbon source, nitrate, and sulfate and increase in dissolved inorganic carbon and fluid conductivity were indicative of microbial activity in the biotic column. We also measure relative increase in the interfacial electrical properties that exceed relative increase in the electrolytic conductivity. Thus changes in the real and imaginary conductivity were induced by microbial processes. These results suggest that interpretation of geoelectrical data from near surface environments should consider effects of microbial processes

    High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction

    Get PDF
    Disimilatory iron-reducing bacteria play an important role in the reduction of Fe(hydr)oxides and the production of secondary solid-iron mineral phases that can have magnetic properties. Magnetic susceptibility can therefore play an important role in identifying zones where microbial-mediated iron reduction is occurring. We investigated the magnetic susceptibility variations in a hydrocarbon-contaminated aquifer where methanogenesis and iron reduction are the main biogeochemical processes. Our objectives are to (1) determine the variability of magnetic susceptibility, (2) determine the hydrobiogeochemical controls on the magnetic susceptibility variability, and (3) evaluate the use of magnetic susceptibility as a viable technique for identifying zones where the coupling of iron and organic carbon cycling is occurring. Magnetic susceptibility data were acquired down 11 boreholes within contaminated and uncontaminated locations. We show that magnetic susceptibility values for boreholes within the free phase plume are higher than values for boreholes within the dissolved phase plume and background. Magnetic susceptibility values are highest within the zone of water table fluctuation with peaks predominantly occurring at the highest water table marks and are also coincident with high concentrations of dissolved Fe(II) and organic carbon content, suggesting that the zone of water table fluctuation is most biologically active. High magnetic susceptibility values within the vadose zone above the free phase plume are coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane coupled to iron reduction. Our results suggest that magnetic susceptibility can be used as a viable tool in iron and carbon cycling studies

    Microbial Growth and Biofilm Formation in Geologic Media Is Detected with Complex Conductivity Measurements

    Get PDF
    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (Ļƒā€³) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies
    • ā€¦
    corecore